Professional Degree courses in Dentistry, Education, Law, Medicine and Theology (MTS, MDiv)
6000-6999
Courses offered by Continuing Studies
9000-9999
Graduate Studies courses
* These courses are equivalent to pre-university introductory courses and may be counted for credit in the student's record, unless these courses were taken in a preliminary year. They may not be counted toward essay or breadth requirements, or used to meet modular admission requirements unless it is explicitly stated in the Senate-approved outline of the module.
Suffixes
no suffix
1.0 course not designated as an essay course
A
0.5 course offered in first term
B
0.5 course offered in second term
A/B
0.5 course offered in first and/or second term
E
1.0 essay course
F
0.5 essay course offered in first term
G
0.5 essay course offered in second term
F/G
0.5 essay course offered in first and/or second term
H
1.0 accelerated course (8 weeks)
J
1.0 accelerated course (6 weeks)
K
0.75 course
L
0.5 graduate course offered in summer term (May - August)
Q/R/S/T
0.25 course offered within a regular session
U
0.25 course offered in other than a regular session
W/X
1.0 accelerated course (full course offered in one term)
Y
0.5 course offered in other than a regular session
Z
0.5 essay course offered in other than a regular session
Glossary
Prerequisite
A course that must be successfully completed prior to registration for credit in the desired course.
Corequisite
A course that must be taken concurrently with (or prior to registration in) the desired course.
Antirequisite
Courses that overlap sufficiently in course content that both cannot be taken for credit.
Essay Courses
Many courses at Western have a significant writing component. To recognize student achievement, a number of such courses have been designated as essay courses and will be identified on the student's record (E essay full course; F/G/Z essay half-course).
Principal Courses
A first year course that is listed by a department offering a module as a requirement for admission to the module. For admission to an Honours Specialization module or Double Major modules in an Honours Bachelor degree, at least 3.0 courses will be considered principal courses.
Basic resistive circuits, Ohm's, Kirchhoff's Laws. DC analyis: nodal and mesh analysis. Network theorems: linearity, superposition, Thévenin's and Norton's theorems. Time-domain analysis: first and second order circuits, source-free and forced response. Sinusoidal steady-state analysis: phasors, complex power. Basic OpAmp circuitry.
Electronic properties of semiconductors. The P-N junction. Diodes and light-emitting diodes; bipolar and field-effect transistors. Biasing, small signal analysis, large signal analysis. Single transistor amplifiers.
Introduction to a system level analysis of electrical circuits. The S-Plane and frequency response of circuits, frequency selective circuits, state variables, introduction to Fourier analysis, Fourier transform and Laplace transform techniques. Transfer functions and system functions.
Laboratory experiments associated with ECE 2205A/B, as well as laboratory experiments in instrumentation and measurement; the lecture component includes review of laboratory practice, health and safety issues, simulation software, data collecting methods; errors and their calculus; accuracy; averaging, signal conditioning, and data interpolation.
Laboratory experiments associated with ECE 2231A/B,ECE 2233A/B and ECE 2236A/B; basic semiconductor circuit elements (diodes, LEDs and transistors); second order circuits; sensors and electro-mechanical devices; and a design project.
Introduction to electrical engineering design. Topics include the engineering design process, review of sensors and signal conditioning, digital system design, analog system design, programmable logic controllers (PLCs).
This course introduces the principles of electrical circuits and components, including common electric motors employed in mechanical systems. Laboratories to introduce the students to common measurement tools used to assess and troubleshoot circuits. These foundations are expanded upon in a subsequent course focusing on electronic components and their applications.
Theory of Boolean algebra, switching circuits, Venn diagrams; Karnaugh maps; logic and memory systems, design of combinational and sequential switching machines; electronic switching circuits; data coding, storage, transmission; basic design of digital computers.
Antirequisite(s): The former ECE 3339A/B.
Prerequisite(s):Physics 1202A/B or the former Physics 1302A/B or Physics 1402A/B.
Corequisite(s):ECE 2205A/B or registration in Integrated Engineering or Software Engineering Program.
Extra Information: 3 lecture hours, 2 laboratory hours, 1 tutorial.
The concept of feedbacks; modelling of dynamic systems; characteristics of feedback control systems, performance of control systems in time and frequency domains; stability of feedback systems; control system analysis and design. Using root locus and frequency response techniques.
Introduction to discrete-time signals and sampled data, linear time-invariant (LTI) systems, frequency response, discrete Fourier transforms, convolution, spectrum analysis, Z-transforms, non-recursive digital filters.
Antirequisite(s):AISE 3351A/B or the former ECE 3351A/B.
Basic Principles related to magnetic fields and energy conversion, transformers, DC machines, synchronous machines, induction machines, special purpose motors.
Per unit System; three phase transmission systems; three phase transformers; transmission line parameters; steady state operation of transmission lines; maximum power flow; reactive power compensation; economic operation of power systems.
Radio-frequency transmission lines, telegrapher's equations, Smith chart. A vector treatment of the theory of electric and magnetic fields. Integral and differential forms of Maxwell's equations. Boundary conditions. Scalar and vector potentials, reflection and transmission of electromagnetic waves in dielectric and conducting media.
Frequency response in electronic circuits, zener diode and power supply (voltage regulator) circuits, power amplifiers, differential amplifiers, feedback circuits, miscellaneous topics (Miller effect, current mirrors, cascade and cascode circuits, etc.)
This course covers fundamentals of semiconductor physics as applied to microelectronics, theory of semiconductor materials and devices. Students will be exposed to basic elements of CMOS circuitry design, including practical implementation of resistors, capacitors, diodes, transistors and MOSFET. Related topics such as delays, cross-talk, parasitics, temperature effects are included.
This course deals with fundamental principles of wireless RF communications, AM, FM, and PM modulation, demodulation and spectra, and frequency shifting and mixing. Practical linear and nonlinear circuits for a heterodyne radio receiver are studied, including RF/IF amplifiers, matching networks, oscillators, mixers, modulators, demodulators, and phased-locked loops.
Basic elements of computers: central processing unit; memories; input/output devices; interfacing, software and hardware design, Computer Assisted Design; data handling and process control equipment; applications of microprocessors.
Introduction to computer system design and the architecture of modern high-performance computers. Memory hierarchy. RISC, superscalar, and multi-core architectures. Microprogrammed and hardwired control implementations. Students will complete group design projects integrating these concepts.
Antirequisite(s): The former ECE 4470A/B, the former ECE 4489A/B.
Prerequisite(s):ECE 3375A/B and ECE 3380A/B, or completion of third year of the Software Engineering program.
Extra Information: 3 lecture hours, 1.5 laboratory hours.
Modern design techniques for embedded, wireless, and mobile computing systems. Unified approach to hardware and software design. Partitioning of systems into hardware and software. Hardware/software interface design. Trade-offs in hardware and software partitioning.
Principles and Practices of Design of Electronic Systems is a third year design course in the Electrical Engineering Program. Topics include principles and practices of design of electronic systems through projects in the area of communications, microprocessors, control systems and signal processing.
Selection and investigation of a computer engineering problem. Analytical and/or experimental work is carried out by project groups under the supervision of a faculty member. Progress report and a final engineering report are prepared. Each student must deliver a public oral presentation.
Antirequisites: CBE 4497,CEE 4441,ECE 4416, Engineering Science 4499, GPE 4497, MME 4499,MSE 4499,SE 4450.
Prerequisite(s): Completion of third year of the Computer Engineering program.
Selection and investigation of an engineering problem. Analytical and/or experimental work is carried out by individual students or project groups under the supervision of a faculty member. Progress reports and a final engineering report are prepared; each student must deliver a public lecture.
Digital Signal Processing (DSP) is widely used in speech and audio processing, biomedical engineering, and telecommunication applications. The objectives of this course are to strengthen the students' knowledge of DSP fundamentals, to introduce them to advanced DSP topics, and to familiarize them with the practical aspects of DSP algorithm implementation.
Transceiver design for digital communication systems. Deterministic and random signals. Digital modulation techniques. Performance analysis under noisy conditions. Digital communication through bandlimited channels. Characteristics of wireless channel, channel estimation. Synchronization techniques. Multiple access techniques, CDMA, TDMA, FDMA. Principles of OFDM, cyclic prefix, in-band pilots, PAPR, applications of OFDM.
Introduction to networking, network architecture and protocols, layering, OSI and TCP/IP models. Physical layer: transmission media, data encoding, Asynchronous and synchronous transmission. Data link layer: error detection, flow control, error control. Packet Switching: datagrams, virtual circuits, routing, congestion control, internetworking. Local area networks, network layer and transport layer.
Introduction to communication systems and information theory. Classification of signals and systems. Communication channel modeling. Fourier series and transform applications. Modulation techniques. Sampling theory and digital transmission. Digital modulation, optimum receiver design, performance analysis. Error control. Selected topics.
This course explores a few major areas of digital image processing at an advanced level, with primary emphasis on medical applications. Topics covered include image filtering and enhancement, visualization, image segmentation and image registration. Examples will be presented to give the students exposure to real-world applications in medicine and other applications.
Global energy resources, distribution and consumption. Sustainability. Principles of operation and control of thermal, nuclear, thermal and hydroelectric, photovoltaic solar and wind power plants. Distributed Generation (DG) and renewable energy technologies. Grid integration of distributed generation.
This course covers the fundamentals of digital image processing, including image representation, histograms, contrast enhancement, geometric operations, registration, digital filtering and segmentation. Emphasis is placed on implementation of algorithms and on practical applications in industry, science and medicine.
The objective is to examine in-depth the practice of analog and digital communications. Fundamentals of wireless communication electronics are considered. A number of existing systems, including 2G/3G wireless systems, satellite communication systems, radio and TV broadcasting, and others are reviewed. Design aspects of wireless communications systems.
An introduction to biomedical engineering organized around applications of linear and control systems analysis to the dynamics of physiological systems and their responses to diagnostic and therapeutic interventions. Emphasis will be placed on respiratory and cardiovascular physiology and interactions of those systems with medical devices.
To allow students to: a) gain an understanding of the basic principles of protective relays and b) have a practical understanding of protection schemes for electrical power systems and equipment.
The use of power semiconductor devices in converter structures (topologies) to process and control the flow of electric energy. The aim of the course is to familiarize students with various power electronic converter topologies and their applications.
Power flow studies; symmetrical faults; symmetrical components; unsymmetrical faults; power system stability; Introduction to High Voltage DC (HVDC) Transmission and Flexible AC Transmission Systems (FACTS).
Engineering problems as optimization problems. Single-variable optimization. Multi-variable unconstrained optimization. Advanced techniques for unconstrained optimization. Equality and inequality constraints and optimality criteria. Techniques for constrained optimization. Linear programming.
Prerequisite(s):NMM 3415A/B or the former Applied Mathematics 3415A/B.
The course covers analytical methods for analyzing and developing control strategies for industrial processes. These include identification and empirical modeling, tuning of PID controller, digital control systems, z-transformation. PLCs are discussed. Computer based simulation modules using Matlab^® and Simulink^® reused. Examples from different engineering disciplines are studied.
Prerequisite(s):ECE 3331A/B (or AISE 3351A/B or the former ECE 3351A/B), ECE 3330A/B as well as successful completion of the third year of the Engineering program.
Extra Information: 3 lecture hours, 1.5 laboratory hour.