Professional Degree courses in Dentistry, Education, Law, Medicine and Theology (MTS, MDiv)
6000-6999
Courses offered by Continuing Studies
9000-9999
Graduate Studies courses
* These courses are equivalent to pre-university introductory courses and may be counted for credit in the student's record, unless these courses were taken in a preliminary year. They may not be counted toward essay or breadth requirements, or used to meet modular admission requirements unless it is explicitly stated in the Senate-approved outline of the module.
Suffixes
no suffix
1.0 course not designated as an essay course
A
0.5 course offered in first term
B
0.5 course offered in second term
A/B
0.5 course offered in first and/or second term
E
1.0 essay course
F
0.5 essay course offered in first term
G
0.5 essay course offered in second term
F/G
0.5 essay course offered in first and/or second term
H
1.0 accelerated course (8 weeks)
J
1.0 accelerated course (6 weeks)
K
0.75 course
L
0.5 graduate course offered in summer term (May - August)
Q/R/S/T
0.25 course offered within a regular session
U
0.25 course offered in other than a regular session
W/X
1.0 accelerated course (full course offered in one term)
Y
0.5 course offered in other than a regular session
Z
0.5 essay course offered in other than a regular session
Glossary
Prerequisite
A course that must be successfully completed prior to registration for credit in the desired course.
Corequisite
A course that must be taken concurrently with (or prior to registration in) the desired course.
Antirequisite
Courses that overlap sufficiently in course content that both cannot be taken for credit.
Essay Courses
Many courses at Western have a significant writing component. To recognize student achievement, a number of such courses have been designated as essay courses and will be identified on the student's record (E essay full course; F/G/Z essay half-course).
Principal Courses
A first year course that is listed by a department offering a module as a requirement for admission to the module. For admission to an Honours Specialization module or Double Major modules in an Honours Bachelor degree, at least 3.0 courses will be considered principal courses.
What our planet is made of, how it works, and how it affects us. Framed on the interactions of the lithosphere, hydrosphere, atmosphere and biosphere. Specific topics include: geological time and earth history; formation of rocks and minerals; rock deformation; volcanoes and earthquakes; plate tectonics and mountain building; natural resources.
An overview of the origin and development of Earth and solar system; constitution and active processes of Earth interior; how these processes have shaped Earth evolution in the past and how they continue to control surface phenomena such as earthquake and volcanic activity. Labs will introduce the main resource exploration techniques.
An introduction to geology covering rock forming minerals and rock forming processes. Emphasis will be placed on how mineral and hydrocarbon resources develop. A survey of the geological record is carried out to illustrate how resources are classified and distributed through time.
This course introduces students to geologic materials and processes and examines their significance to humans. Emphasis is placed on the evidence for perturbations of Earth's natural environments by humans that impact on our planet's future. Specific topics include utilization of natural resources, waste management, water quality, geological hazards, and global change.
Concepts of the development of life on Earth. Darwinian evolution and modern concepts of evolution. Genetics and evolution. Mode and rate of evolution. A survey of the vertebrate fossil record with focus on particular groups, including dinosaurs. Major extinction events in the fossil record. Origin of the geological time scale.
Our best perception of the origin of the Universe, the Milky Way Galaxy, and our Solar System, meteorites, asteroids, comets and the formation of planets. The slow growth of Planetary Science reason and analysis of hypotheses. Why and how Earth evolved along a path radically different than the other planets.
An examination of Earth materials used over the history of human culture. Topics include: Earth materials as media in the Visual Arts (pigments, stone and clay); rocks, minerals and fossils as motifs in famous works of art; landscape photography; gemstones and jewelry; earth materials in wine and cuisine, and modern technology.
An introduction to the Earth as a large heat engine; topics will focus on large scale dynamic processes that occur in the deep interior (mantle and core convection) and their relation to activity and phenomena on the face of the Earth (tectonic plate motions, plate interactions, earth magnetic field, etc.).
A field-trip based course exploring the history and patterns of geology, physical landscapes and resources of southwestern Ontario. To be offered in the first half of the fall semester; four mandatory, full day field excursions supported by a weekly lecture.
Extra Information:Enrolment limited to students registered in the Minor or Major in Geology; recommended to be taken in second year and may not be taken after Earth Sciences 2250Y. A transportation fee is required, see the Department of Earth Sciences website for more information. This course does not fulfill the field course requirements for students registered in a Specialization or Honours Specialization within the Department or Earth Sciences.
Rock types and their distribution within the Earth's crust are a result of tectonics, including continental rifting, seafloor spreading, subduction, obduction, and orogenic uplift and collapse. Lectures synthesize and explain major rock types in primary and secondary tectonic settings. Laboratories examine rocks and textures in hand specimens.
Prerequisite(s): Any 0.5 Earth Sciences course at the 1000 level or registration in a Major, Specialization, or Honours Specialization in the Faculty of Science or in the Basic Medical Sciences.
Extra Information: 2 lecture hours, 3 laboratory hours.
Deformation of Earth's crust; description of geological structures; construction and interpretation of geologic maps, cross sections and block diagrams; stereographic and orthographic representation of structural data; mechanical behavior of rocks; origin and tectonic significance of geological structures.
Extra Information: 2 lecture hours, 3 laboratory hours. Note: Grade 12 Physics or 0.5 course in first year Physics is recommended before taking this course.
Introduction to mineral chemistry, crystal chemistry and mineral paragenesis, with emphasis on rock-forming minerals and ore minerals. Identification of minerals and mineral properties in hand specimen and thin section.
Pre-or Corequisite(s):Earth Sciences 2200A/B, or registration in a Materials Science module.
Extra Information: 2 lecture hours, 3 laboratory hours. Note: Grade 12 Chemistry or 0.5 course in Chemistry is recommended.
A brief introduction to applied seismology - the investigation of Earth structure using sound waves in rocks. Topics include: seismic reflection methods, a cornerstone of oil and gas exploration; seismic refraction methods; earthquake seismology. This lab-oriented course will provide hands-on experience with computers and analysis of large digital data sets.
An introduction to data analysis, digital signal processing, machine learning and visualization techniques. Topics include: statistical methods to characterize uni- to multi-variate data, spatial data, time series and Fourier analyses, digital signal processing and filtering, data analytics and machine learning applications. Geophysics and environmental science applications will be emphasized.
Effects of temperature, pressure and bulk composition on stabilities of minerals in natural geological settings are evaluated using thermodynamic principles. Reaction rates among minerals and fluids, including the effects of natural catalysts and inhibitors, and biotic mediation are addressed. Introduction to the principles of radioisotope and stable isotope geochemistry.
An introduction to planetary science and the exciting frontier of space exploration; emphasis is placed on the processes shaping the planets and moons of the Solar System and how this relates to the evolution of Earth, the Solar System, and life; attention paid to current results from planetary exploration missions.
Rare events so catastrophic that they leave evidence in the geologic record and threaten life on Earth. Included are impacts by asteroids and comets, eruptions from giant resurgent volcanic calderas, large to mega-earthquakes and associated tsunami, and dramatic reduction of atmospheric oxygen by release of reservoirs of methane hydrate.
Earth processes leading to disasters; the amplification of earth processes by human activity; individual, national and global policies mitigating natural disasters. Volcanoes and earthquakes in the context of plate tectonic processes. Mass wasting, large storms, floods, and fires; global climate change.
Eleven-day field camp in the vicinity of Whitefish Falls, northern Lake Huron. Students will examine Precambrian metasedimentary and Early Paleozoic sedimentary rocks, make a geological map, measure a stratigraphic section and learn techniques of paleocurrent analysis.
Extra Information: 11-day field course typically held in May. There is an associated cost with this course, see the Department of Earth Sciences website for more information.
Origins of sedimentary grains. Transport processes. Characteristics of the main types of sedimentary basins. Stratigraphic methods, including litho-, allo-, bio-, chrono-, and magneto-stratigraphy. Labs include examination of sedimentary rocks, well-log correlation and seismic stratigraphic analysis. At least one field trip is organized.
A survey of the fossil record from bacteria, protista, calcareous algae, to invertebrate animals. Topics on each group of fossils include functional morphology, evolutionary trend, ancient living environments, contribution to sediment accumulation and reef-building, utility for dating and correlating rocks and for understanding long-term biodiversity change.
Introduction to the fossil record that documents the major steps in vertebrate evolution, including the origin and radiation of fishes, amphibians, mammal-like reptiles, dinosaurs, birds, and mammals.
Prerequisite(s): Completion of first-year requirements, and registration in an Earth Sciences, Biology, Anthropology, or Kinesiology module.
Introduction to physical geology with emphasis on the engineering oriented aspects of the Earth Sciences. Topics include: minerals and rocks; mass movements; interpretation of aerial photographs, topographic and geologic maps; surficial processes and their manifestations; surface and ground water; structural geology and subsurface processes; and earth resources.
The study of life in the universe, including the origin of life on Earth, the possibility of life elsewhere in the solar system/universe, and the future of human life off-Earth. This course will include topics that draw from biology, physics, astronomy, geology, chemistry, and other areas.
Prerequisite(s): 1.0 course(s) from any of Chemistry, Biology, or Physics at the 1000 level.
Extra Information: 2 lecture hours, 2 laboratory hours.
This is an advanced community-based experiential course that combines in-class discussions with community-based research. Students will train in methodologies and ethics of working with First Nations communities. Areas of research may include but not limited to ecological restoration, land claims, self-government, education, health and wellness and urban issues.
Prerequisite(s): Registration in any module in the Department of Earth Sciences.
Extra Information: 2 lecture hours. Cross-listed with Indigenous Studies 4023F and Geography 3001F/G. Class meets F 8:30-12:30 from September 16 to October 21 which is equivalent to 2 lecture hours per week as listed in the Academic Calendar.
An exploration of the issues facing the world’s fresh water supply. Emphasis will be on major problems in the water arena (e.g., droughts, floods, pollution, population shifts & growth, region specific climate change, conflict, water rights and allocations).
Prerequisite(s): At least 1.0 course equivalent at the 2200 level or higher in Biology, Earth Sciences, Environmental Science, or Geography, or permission of the department.
Extra Information: 2 lecture hours, 2 laboratory / tutorial hours.
The study of crystal structure, crystal chemistry and stability of rock-forming minerals. Compatibility of atomic substitution in minerals (solid solution, exsolution) is viewed from structural and thermodynamic perspectives. Selected topics include crystal growth, X-ray diffraction (XRD), electron probe microanalysis (EPMA), colour in minerals, crystal field theory and mineral physics.
This course reviews the origin and evolution of our solar system and formation of the rocky planets and other bodies by examining dynamical evidence and meteorites. We examine meteorite mineralogy and textures using optical microscopy, X-ray diffraction and geochemical data. We also examine Earth impacts, the moon and Mars.
Study of igneous processes using rock and thin section descriptions (petrography). Discussion of how different compositions and conditions influence the phases present in a rock (phase equilibria). Association of different rock types with plate tectonic setting.
Identification and description of various types of siliciclastic and carbonate rocks; the important characteristics of sedimentary rocks and their key sedimentary features for interpretation of present and ancient despositional environments; survey of diagenetic processes that alter original properties of primary sediments.
Study of metamorphic processes using rock and thin section descriptions (petrography). Discussion of factors that control the mineralogy and physical attributes of different metamorphic rocks (e.g., temperature, pressure, composition, fluids). Use of phase equilibria and geochronology to understand metamorphic histories. Association of different rock types with plate tectonic setting.
An advanced course covering the geophysical techniques used for subsurface sensing, with applications to environmental studies and resource exploration. Data analysis includes seismology, gravity, electromagnetic and radiometric applications.
An introduction to physics of the Earth's interior. Major topics are: Earth structure from seismic observations, heat flow, the physics of minerals under high temperatures and pressures, equations of state, seismological, thermal and compositional models.
An introduction to the basic concepts of geodesy and geodetic surveying, to include geometrical and physical geodesy. Material covered will include datums and coordinate systems, space and surface geodetic techniques, gravity and precise leveling, uncertainty estimation, and error propagation. Specific applications will include GPS data collection and analysis.
Occurrence, movement, and behavior of water in the hydrologic cycle. The development of quantitative representations of hydrologic processes (e.g., precipitation, evapotranspirtation, runoff, infiltration and unsaturated flow, saturated flow, surface flow). Analysis of stream response hydrographs. Statistical models of predicting flood responses and water resource management.
Prerequisite(s): Any 1.0 course equivalent at the 1000 level from Calculus, Mathematics, Applied Mathematics, Numerical and Mathematical Methods, Data Science, or Statistical Sciences
Extra Information: 2 lecture hours, 2 laboratory hours.
Acquisition of solutes by rain, surface and subsurface waters and their transportation and deposition in natural environments (e.g., formation of ore deposits). Natural sources of potential pollutants (e.g., heavy metals). Geochemical cycles of solutes and waters.
Eleven day field school in a deformed metamorphic terrain. Observation and documentation of geological features at outcrops. Three-dimensional thinking and reconstruction of structural geometry. Establishing overprinting relationships among structures. Mapping from mesoscopic to macroscopic scales. Kinematic interpretation and tectonic synthesis of geological data at different scales.
Extra Information: 11-day field course typically held in May. There is an associated cost with this course, see the Department of Earth Sciences website for more information.
A study of biogeochemical processes in Earth’s geologic record and of bacteria interactions in contemporary systems. Topics include methods for the analysis of prokaryotes, factors affecting their community structure and function, and their relationship to geochemistry. Bacteriological culture techniques relevant to geomicrobiological research are introduced in the laboratory component.
A survey course introducing the broad field of mineral deposit geology and the importance of mineral resources. Global theories of ore genesis are considered in deposit classification. Various methods of ore petrology are discussed within the context of specific applications. Laboratory work focuses on reflected light microscopy in the practical study of ore suites.
The material covered builds directly on Earth Sciences 3370A/B Metallogenic models are applied to a wide spectrum of deposit types. Emphasis is placed on establishing geological criteria for mineral exploration. Laboratory work focuses on reflected light microscopy in practical studies of ore suites.
The study of the fundamental geological components of petroleum systems responsible for oil and natural gas accumulations in sedimentary basins. The fate of organic matter is traced along a path from source rocks, maturation, migration, to reservoir, trap and seal. Labs incorporate use of industry software.
Field study of the geology and biology of various Moon/Mars analogue sites in North America. Lectures/seminars/practical exercises will emphasize similarities and differences between the terrestrial sites and other planetary bodies, and the subtle interactions between geology and biology at each site.
Extra Information: A 13-day field course typically held in early May in Arizona and Utah. Note: Students expecting to graduate in the current year's spring convocation cannot take the course. There is an associated cost with this course, see the Department of Earth Sciences website for more information.
Introduction to model parameter estimation, forward modelling, and data inversion methods in geophysics and related fields. Topics include: discrete linear inverse problems, linear regression and least-squares solutions, maximum likelihood methods, singular value decomposition, uniqueness and accuracy, ill-conditioning and regularization, Bayesian formulation of inverse problems, non-linear regression and non-linear inverse problems.
Advanced topics in the physics of the Earth and planets including: magnetism; paleomagnetism and the geomagnetic timescale; radioactivity, radioactive dating and Earth's age; elasticity and flexure of plates; principles of continuum mechanics; elastic properties of the Earth's lithosphere; principles of isostasy; rheology of rocks; shape and rotation of the Earth.
An advanced overview of seismic hazard analysis for earthquake engineering purposes including strong motion seismology, earthquake site response and site classification techniques. Students will assess earthquake site response from earthquake recordings, numerical simulations, and evaluate case studies worldwide. Various software programs are used to model predictions of earthquake site response.
Introduction to elementary solid state theory, high pressure geophysics, phase transformations, elasticity, physical properties and mineral physics of the Earth's mantle and core.
Stable isotopes (O,H,C,S,N), atmosphere, hydrosphere, sedimentary and diagenetic systems, hydrothermal systems, fluid migration, ore-forming fluids, igneous and metamorphic rocks. Environmental applications: groundwater, oceans, wetlands, acid rain; acid mine drainage, climate fluctuation; global cycle modification. Radiogenic isotopes: dating techniques; crust and mantle evolution, environmental tracing.
Prerequisite(s):Earth Sciences 2230A/B or Earth Sciences 3341A/B or completion of any 2000 level half-course in Chemistry; or registration in the third or fourth year of an Environmental Sciences module; or permission of the Department.
The principles of metal concentration and deposition in magmatic and hydrothermal environments are examined. Natural and experimental data, including fluid inclusion, stable isotope, metal solubility, mineral stability, and metal partition behavior, are used to develop genetic models for ore deposits. Such models form the basis of mineral exploration strategies.
This course introduces the geologic processes operating on the solid surfaces in the solar system. Includes a survey of the terrestrial planets (including the Moon), large asteroids and comets, and the satellites of the outer solar system.
Occurrence, distribution, movement, chemistry and composition of ground water as a function of the geological environment; water quality and ground water contamination; collection and evaluation of hydrogeologic data; modelling ground-water flow and advective transport; case histories.
Extra Information: A 10-day field course typically held in early September. There is an associated cost with this course, see the Department of Earth Sciences website for more information.
A Geophysical field school providing introduction to the practical application of various geophysical techniques (gravity, magnetics, electrical, electromagnetics, seismics, or ground penetrating radar). On-campus lectures with outdoor field sessions, and off-campus field days with industry participation. Applicable to earth sciences, environmental (geo)science, anthropology, and civil engineering.
Extra Information: A ten day field course typically in early September. Note: Students must inform the designated instructor of their intention to register in the course prior to May 1st, and register prior to August 15th. The field course is subsidized by the department.
A research-level field course to globally significant international or Canadian geological type localities. Students will gain practical field experience through the collection, analysis, and presentation of primary geological and geophysical field data. Lectures/ seminars/ practical exercises will emphasize the interaction between the physical, chemical, and biological aspects of the Earth system.
Extra Information: A 10-to-14-day field course typically held in April/May although it may be offered at other times of the year given the weather in international locations. There is an associated cost with this course, see the Department of Earth Sciences website for more information.
An overview of the principal depositional environments of clastic and carbonate rocks, with emphasis on the recognition and interpretation of sedimentary facies and facies successions. Field and laboratory exercises involving outcrop and subsurface data will be used to integrate facies analysis with sequence stratigraphy.
Advanced topics on applications of paleontological data to reconstructions of evolutionary history, ancient environments, geochronology, and paleobiogeography.
Advanced-level study of the global distribution of ore deposits. Problems of metal source, transport and deposition are discussed within the context of crustal evolution. Ore types sensitive to secular changes in the Earth's lithosphere-hydrosphere-atmosphere-biosphere are emphasized. Field excursions to major ore districts may be arranged.
Advanced-level study of characterization and quantitative assessment of petroleum plays and prospects, with an emphasis on the integration of Geoscience, introductory reservoir engineering and basic economic indicators on the valuation of oil and gas properties. Labs will analyze case studies using industry software.
A presentation of research on a chosen problem. Original data must be generated from field or laboratory studies and analyzed using appropriate methodologies. The results must be integrated into the existing literature on the topic. Independence in the conduct and reporting of research must be demonstrated.
Prerequisite(s): Registration in year 4 of a Specialization or Honours Specialization offered by the Department of Earth Sciences, or permission of the Department.
A forum for students to meet the other planetary geology students and faculty in an informal setting. We will discuss research areas, practice giving and critiquing talks, and provide information on careers.
Prerequisite(s): Enrollment in an Earth Sciences module or permission of the department.
Introduction to the technical and conceptual basis for applying remote sensing and image analysis to Earth and planetary science. Hands on experience in computer processing of remote sensing data from diverse terrestrial and planetary data sets.