Applications of integration, integration using mathematical software packages. Scaling and allometry. Basic probability theory. Fundamentals of linear algebra: vectors, matrices, matrix algebra. Difference and differential equations. Each topic will be illustrated by examples and applications from the biological sciences, such as population growth, predator-prey dynamics, age-structured populations.

Introduction to first order differential equations, linear second and higher order differential equations with applications, complex numbers including Euler's formula, series solutions, Bessel and Legendre equations, existence and uniqueness, introduction to systems of linear differential equations.

Vector space examples. Inner products, orthogonal sets including Legendre polynomials, trigonometric functions, wavelets. Projections, least squares, normal equations, Fourier approximations. Eigenvalue problems, diagonalization, defective matrices. Coupled difference and differential equations; applications such as predator-prey, business competition, coupled oscillators. Singular value decomposition, image approximations. Linear transformations, graphics.

Introduction to numerical analysis; polynomial interpolation, numerical integration, matrix computations, linear systems, nonlinear equations and optimization, the initial value problem. Assignments using a computer and the software package, Matlab, are an important component of this course.

An introduction to mathematical biology. Case studies from neuroscience,immunology, medical imaging, cell biology, molecular evolution and ecology will give an overview of this diverse field, illustrating standard mathematical approaches such as compartmental analysis and evolutionary game theory.

Functions of a complex variable, analytic functions, integration in the complex plane, Taylor and Laurent series, analytic continuation, Cauchy's theorem, evaluation of integrals using residue theory, applications to Laplace transforms, conformal mapping and its applications.

Existence and uniqueness of solutions, phase space, singular points, stability, periodic attractors, Poincaré-Bendixson theorem, examples from physics, biology and engineering, frequency (phase) locking, parametric resonance, Floquet theory, stability of periodic solutions, strange attractors and chaos, Lyapunov exponents, chaos in nature, fractals.

Boundary value problems for Laplace, heat, and wave equations; derivation of equations; separation of variables; Fourier series; Sturm-Liouville Theory; eigenfunction expansions; cylindrical and spherical problems; Legendre and Bessel functions; spherical harmonics; Fourier and Laplace transforms.

The course will provide an overview of the mathematical modelling of the spread of infectious disease within populations and equip students to use mathematical models to describe real-world disease incidence data. Topics include: ordinary differential equation models of endemic, epidemic and pandemic diseases; model selection, data fitting and parameter estimation.

An introduction to neural networks, covering the fundamentals of neural computation and how networks of neurons support information processing in the brain. Coursework will introduce techniques in computational modeling, programming and data science, focusing on recent developments in deep learning as applied to the context of explaining the brain.

Strengths and limitations of computer algebra systems (CAS); complexity of exact computations versus possible instability of numerical computations; selecta from Groebner bases, resultants, fractional derivatives, Risch integration algorithm, special functions including the Lambert W function. The emphasis is on preparing the student to use CAS in mathematics, science, and engineering.

Boundary value problems for Laplace and Helmholtz equations, initial value problems for heat and wave equations, in one to three dimensions; Green's functions in bounded and unbounded domains; Method of Images.

The student will work on a project under faculty supervision. The project may involve an extension, or more detailed coverage, of material presented in other courses. Credit for the course will involve a written as well as oral presentation.